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Abstract. From the basis elements of a Clifford algebra Cl, we generate a grading leading 
to a unitary Lie superalgebra when n is even. Such a construction is motivated by the 
understanding of the specific properties of the fermionic variables in the so-called spin-orbit 
coupling procedure of supersymmetrisation in N = 2 supersymmetric quantum mechanics. 
The n-odd case is also considered and some specific examples are discussed. 

1. Introduction 

Bosonic and fermionic degrees of freedom are always simultaneously handled and 
mixed in operators defined in supersymmetric quantum mechanics. Their typical 
properties are specifically dependent on the supersymmetrisation procedure developed 
for the construction of the corresponding Hamiltonian. 

Let us recall here that, in N = 2 supersymmetric quantum mechanics, two procedures 
have often been used, that is the so-called standard (Witten 1981,3982, de Crombrugghe 
and Rittenberg 1983) and the spin-orbit coupling (Balantekin 1985, Gamboa and 
Zanelli 1985, Kostelecky et al 1985, Beckers et al 1987,1988) ones. They are subtended 
by the same usual properties on the bosonic variables but by different properties on 
the fermionic variables. When an n-dimensional harmonic oscillator is concerned, the 
two procedures have already been characterised (Beckers et al 1987, 1988) by general 
arguments (see section 2 for detailed information). Indeed the standard procedure 
implies that the 2n fermionic variables constitute (see equations (2.12)) the basis 
elements of a Clifford algebra Clzn while the spin-orbit coupling procedure handles 2n 
fermionic variables that cannot generate this Clifford algebra (see equations (2.12b) 
and (2-13)). In fact, the main purpose of this paper consists in the determination of 
the structure subtended by these last 2n fermionic variables of the spin-orbit coupling 
procedure. This requires the construction of the set 

{ C Y k , P k , s k ’ = - s ’ k ,  k, l = 1 , 2 , . .  . , n} 

starting from the basis elements of a Clifford algebra Cl,. In this way we generate a 
grading leading to a unitary Lie superalgebra (Kac 1977a, b, 1978, Rittenberg 1978, 
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Bars 1984, Hurni and Morel 1986), an original construction relating Clifford algebras 
and Lie superalgebras. 

The content of this paper is distributed as follows. In section 2 we review the two 
supersymmetrisation procedures that are of special interest and we give some specific 
relations in each context with respect to the fermionic variables. Section 3 deals more 
particularly with the spin-orbit coupling procedure when the number 1'1 of spatial 
dimensions is even. In fact, this leads to a general construction (section 3.1) of a unitary 
Lie superalgebra by starting from a Clifford algebra C1, and permits a very simple 
matrix realisation (section 3.2). In section 4 we discuss the corresponding context but 
when n is odd and we develop, in section 5, some examples corresponding to the 
specific values n = 4, (3), 6 and 8. Finally we present a few remarks and comments in 
section 6. 

2. Supersymmetrisation procedures in quantum mechanics 

As pointed out in the introduction different supersymmetrisation procedures have 
already been proposed and used in supersymmetric quantum mechanics. The so-called 
standard and spin- orbit coupling procedures can be uniquely characterised by structure 
relations on the fermionic quantities. Let us just give in this section such typical 
information (Beckers et a1 1987, 1988). 

By definition (Witten 1981, 1982), a quantum mechanical system is said to be 
N-supersymmetric if there exist N operators Q" (a  = 1,2, . . . , N ) ,  called supercharges, 
commuting with the Hamiltonian H 

[Q", HI = 0 (2.1) 
and satisfying the anticommutation relations 

{Q", Q b }  = SabH. 

The N = 1 and N = 2 contexts cover an important part of the interesting physical 
applications (D'Hoker et a1 1988) and hereafter we limit ourselves to the N = 2  
supersymmetry. This is very often expressed in terms of conjugate supercharges defined 
by 

and then the corresponding N = 2 superalgebra (2.1) and (2.2) reads 

{ Q + Y  Q-l=H {Q*, Q * ) = O  [Q*,HI=O. (2.4) 
In an n-dimensional space, the supercharges can be explicitly given by 

where the summation over the repeated index j = 1,2, . . . , n is understood and where 
the operators pj and x, refer to the ( 2 n )  bosonic degrees of freedom and satisfy, as 
usual, the relations 

a 
axj [pi, x,] = -is.. U x=(x1 ,x*  , . . .  yxj, ..., x,). (2.6) p .  = -ia, -i - 
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The so-called superpotential W ( x )  is any scalar function of x. The operators & refer 
to the fermionic degrees of freedom, which are supposed to satisfy in general the 
following relations (Beckers et a1 1987, 1988): 

{ & , k  5 k.1) = 0 (2.7) 

{[+,k, C!-,,}= 8k11-2isk' (2.8) 

- Y E+ = E* (2.9) 

V k ,  1=1,. . . , n 

.;.kl = - = l k  

The corresponding supersymmetric Hamiltonian defined by the anticommutator of Q+ 
and 0- as in equation (2.4) is given by 

H = ~ [ P 2 + ( V W ) ' ] + ~ ( d k d 1 W ) [ 5 + , k ,  & , I I - [ ( d k W ) P I  - ( d l W ) p k l s k '  (2.10) 

where we recognise the usual bosonic part with a potential term given by U ( x ) =  
2(V W)', the other part being in general dependent on both x and p as well as on the 
fermionic variables. 

The above relations can clearly distinguish the two types of supersymmetrisation 
procedures (Beckers et al 1987, 1988). 

If the relations (2.8) are such that all the Ek' are equal to zero, we are dealing with 
the 'standard supersymmetrisation procedure' where the number ( 2 n )  of bosonic and 
fermionic degrees of freedom is the same. 

Let us point out that, if we define the new ( 2 n )  fermionic quantities (Beckers et a1 
1987) 

1 

f f k  = ' 6 + , k +  t - , k  P k  = i(C$-,k - 6+,k) (2.11) 

{ f f k ,  = 2 a k l l  { P k ,  PI}  = 2akll (2.12a) 

we get from equations (2.7)-(2.9) 

and 

{ a k ,  P I } = o  (2.12 b )  

showing that the f f k  and P k  generate a Clifford algebra Cl',,. 
If the E'' are not identically equal to zero in the equations (2.8), this case refers 

to the 'spin-orbit coupling supersymmetrisation procedure', which is evidently only 
meaningful for n 3 2. Originally considered in an ( n  = 3)-dimensional space (Balan- 
tekin 1985), it is easy to see that the last term in the Hamiltonian (2.10) is essentially 
a spin-orbit coupling term when the (super) potential is a central one in particular. 

Here we can also use the new quantities (2.11) and get the same equations (2 .12~)  
but 

{ f f k ,  PI}=4sk'=  - { P k ,  (2.13) 

As already mentioned in the introduction, we want to construct the set { f f k ,  P k ,  Ek', k, 1 = 
1,. . . , n }  according to equations ( 2 . 1 2 ~ )  and (2.13) for arbitrary n L 2. 

Within such a program developed in the following sections, let us already mention 
a trivial case that we shall exclude, that is when the f f k  and P k  are supposed to be 
linearly dependent. In fact, in such a case, it is easy to see that all the E k f  are multiples 
of the identity and that the f f k  and P k  satisfy two unitarily equivalent Clifford algebras 

P k  = U a k U t  k =  1,. . . , n U+= U-'* (2.14) 
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This exclusion will necessarily fix n to be greater than two in our developments. Indeed, 
for n = 2, the Clifford algebra C1, of the elements a1 and a2 can be realised in terms 
of the 2 x 2  Pauli matrices 

ay1 = U ]  a2 = 0 2 .  (2.15) 

Then, the relations (2.13) will be satisfied if and only if the unitary 2 x 2 matrix U 
takes the form 

7F 
cp = (2p + 1) - 

0 exp(-icp) 4 
(2.16) 

where p is an integer. It leads through (2.14) and (2.15) to the other equivalent Clifford 
algebra(s) 

P I  = * U 2  P 2  = Tu1 (2.17) 

so that 

(2.18) 

As a last remark, let us point out that, in such an n = 2 case, the only independent 
elements, 0, and u2, generate together with the identity the Lie superalgebra su ( l / l )  
(Kac 1977a, b, 1978). 

p . 1 2  = -$I = 
I I TtU. 

3. Unitary superalgebras from Clifford algebras in n even dimensions 

In this section, let us study the implications of the spin-orbit supersymmetrisation 
procedure in n even dimensions. More precisely, let us construct for each fixed n a 
unitary superalgebra from the basis elements of the Clifford algebra C1, according to 
our equations ( 2 . 1 2 ~ )  and (2.13). In the subsection 3.1 we adopt a general point of 
view while in the subsection 3.2 we use an explicit matrix realisation of the Clifford 
algebra, so leading to the usual matrix form of the superalgebra. 

3.1. General construction 

Let us start with n = 2m basis elements a k  generating a Clifford algebra C1, of 
dimension 2" 

{ a k ,  all = 2 a k I l  k , l = l ,  ..., n. (3.1) 
As we shall show, these basis elements transform as the n-dimensional vectorial 
representation of an algebra so(n). In the n-dimensional Euclidean space on which 
this so(n) operates, we define the dual elements (Bacry 1967) denoted by a' ( j  = 
1, . . . , n )  obtained by using the completely antisymmetric Levi-Civita tensor ( E ~ * - "  = 1) 

:r 
a' =- E j k l  . . .p ( Y k a I . .  . aP =ir(-l)J+'al , .  . [ a j ] .  . . a, 

( n - l ) !  (3.2) 

where k < l <  ... < p  ( k , l ,  . . . , p  # j ) ,  r = l  ( r = 2 )  if rn is even (odd) and where the 
notation [x] inside a product means that the factor x is missing. This set of dual 
elements is unitarily equivalent to the preceding one. Indeed, we have 

aJ = UQjU' (3.3) 
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with 

U = :{( 1 + i)l + [ 1 + (- l)"'i]A} (3.4) 

where A is the so-called canonical element 
fl 

A = n  aj. 
j = l  

The proof is direct if we point out the properties 
At = (-l)r+'A A 2 =  ( - l )r+' l  

(3.5) 

and 

a j A =  -Aaj = ( -1) j+ 'a l . .  , [ a j ] .  . . a,  = (-i)raJ, (3.7) 

The dual basis elements a' satisfy 

{aj, ak}=2SJkll (3.8a) 

(3.8b) 

The relations (3.8~1) are trivially established from equations (3.1) and (3.3) while the 
antisymmetry of the equations (3.8b) is directly proved by using equations (3.7). 
Therefore, the basis elements a' can be identified with our elements p, introduced in 
section 2 in connection with the spin-orbit context. The $n( n - 1) quantities SJk will 
be formed by products of (n -2)a, and their explicit form is given by ( I , p , ,  . . , q # 
j ,  k ;  I < p  <. . . < q, j < k )  

zJk = $ r ( - l ) ~ + k a l a p . .  . aq 

= $ r ( - ~ ) J + k a l . .  . [ a , ] .  . . [ a k ] .  . . a,. (3.9) 
Their commutation relations are easily determined (when i s j s k s I ) :  

[8", ak] = 2a V k  ( 3 . 1 0 ~ ~ )  

(3.10b) 

( 3 . 1 0 ~ )  

where 

and 

(3.13) 3 E' =fa .a.. 
1 J  

Now it is useful to compute the commutation relations of the 8,: 

(3.14) 

(3.151) 

(3.156) 
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Equations (3.14) are the usual commutation relations of the generators of so(n)  and 
equations (3.15a, b) show that the a, ( a ' )  transform as the vectorial (dual vectorial) 
representation of so(n)  as was stated before. Moreover, equation (3.16) shows that 
the Ek' also transform as a tensorial representation of s o ( n )  and equation ( 3 . 1 0 ~ )  
shows that their commutators give back the s o ( n )  generators. 

For n = 4, these results correspond to the compact version so(4) of the Lorentz 
algebra. This case shows that the Ekf and s k ,  are linearly dependent. In fact we have 

(3.17) 
For n > 4, they are a generalisation of the analogue of the Lorentz algebra where the 
s k i  have taken the place of the rotation generators and the Ek' the place of the Lorentz 
boosts. In complete analogy with the case of the Lorentz algebra we can build up two 
commuting so( n), ( n  > 4) algebras spanned by 

(3.18) 
Now we shall call odd (respectively, even) elements the ones formed by odd 

{a , ,  - 2 a  -Jk (no summation) (3.19) 
we conclude that we build up the even elements and EJk by anticommuting odd 
elements (see equations (3.8b) and (3.19)). Moreover, we can easily see that, by 
anticommuting the odd elements a, with aJk', we get even elements formed by products 
of ( n  -4)  a, which can be called Zvk'.  By commuting these even E"' with the c y p ,  we 
get odd elements formed by ( n  - 5 )  a and called aykfp .  Then, by anticommuting the 
a' with the aVkip, we get the even element E J k l p .  Going on with this procedure, we can 
obtain all the Clifford algebra elements except A s ( 3 . 5 ) .  In such a construction we 
have always made use of the anticommutators between odd elements and of the 
even-even and even-odd commutators. Thus, finally, we have introduced a grading. 
The general structure of the grading is the following one. Let us call P the set of p 
labels ( il , iz, . . . , ip), GP the set formed by the products gp = a,,a,, . . . alp of p a and 
G P  its dual. For p = 0, GP = GP = 1. Let us introduce the generalised commutation 
relation 

k P ,  go1 = gpgo - (-l)pq*gQgP gP E GP. (3.20) 
Equation (3.20) is not vanishing only if the sets P and Q have an odd number of 
equal labels. It follows the grading 

f G P ,  GQIc GR ( 3 . 2 1 ~ )  
{Gp,  Go]  c GR (3.21 b) 
{Gp,  Go]  c G R  ( 3 . 2 1 ~ )  

where R is the set of ( p  + q -2k) labels formed by the union of the different labels in 
P and Q, k being the number of labels contained in Pn  Q. 

In order that the generalised commutation relation be not vanishing k must be odd 
in equations ( 3 . 2 1 ~ )  and (3.21b) while in equation ( 3 . 2 1 ~ )  the number of labels in P 
not contained in Q must be odd. 

Let us show that this grading leads to the superalgebra s u ( M / M )  where M = 2m- ' .  
We can see by iteration of equations (3.14)-(3.16) that the elements formed by 

products of k a (3 S k s m) transform under the action of E, as the k-fold antisym- 
metric representation and for m < k < n - 2 as its dual ( n  - k)-fold antisymmetric 
representation. 

a k l  1 - 2  - - L i e k b q p  - P 4  k, 4 P, 9 = 17-29 334. 

kl J ;' = ti ( E kl * i E  ) . 

(respectively even) products of a. By noticing that 
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Moreover, we can take suitable combinations of even elements formed by k (#2) 
and ( n  - k )  a such that they transform as the k-fold antisymmetric representation of 
so( n)+ (respectively, so( n ) - )  and the trivial representation of so( n ) -  (respectively, 
so(n)+).  For example, let us mention that these linearly independent combinations of 
even elements with 4 and ( n  -4) a are, respectively, ( J i J L )  and ( J i J 1 , ) .  

In general these combinations are products of i k  generators J +  (J-); they transform 
between themselves under the action of J &  (J,) and commute with Jprl (.Tiq). Thus, 
the elements 

(3.22) 

form two commuting sets. Each term of these sets explicitly gives an even antisymmetric 
representation of one so(n) .  All the terms together span an algebra su(M) where 
M = 2"-' corresponds to the dimension of the fundamental spinorial representation 
of the so(n) .  In this way, to our two commuting sets, we associate the direct sum 
su(M)Osu(M).  This direct sum corresponds, up to one u(l) ,  to the even part of the 
superalgebra su (M/M) .  Moreover, by noticing that the anticommutators of the odd 
elements give the even part, it follows that suitable combinations of these odd elements 
must transform as the sum of the representations ( M ,  A?) and (A?, M )  (Kac 1978). 
Thus, we conclude that we get the superalgebra su(M/M). 

3.2. Matrix realisation 

Let us recall a few essential properties of the superalgebra su( M /  M ) .  It can be written 
(Kac 1977a, b) in a matrix notation in the following form: 

(3.23) 

where A, B, C and D are M x M complex matrices satisfying 

A + = A  D:=D T r A = T r D  and B t =  C. (3.24) 

The block diagonal matrices 

(3.25) 

span the algebra s u ( M ) O s u ( M ) O u ( l )  and they form the even part su(M/M);  of 
the superalgebra. The off -diagonal block matrices, which form the odd part, su( M /  M ) ;  

(3.26) 

transform as the sum of the representations ( M ,  &?) and ( A?, M )  of su( M )  0 su( M ) ,  
and their anticommutators span the even part (the Lie algebra). 

The dimension of the superalgebra is for the even part equal to 2M2 - 1 and for 
the odd part equal to 2M2. This superalgebra is not simple as it contains the one- 
dimensional ideal consisting of the 2M-dimensional identity matrix. 

We have shown in subsection 3.1 that the superalgebra su (M/M)  (with M = 2"-l) 
can be related to a Clifford algebra C1, with n = 2m basis elements. In subsection 3.1 
the construction was presented in some abstract way; here let us show explicitly how 
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to realise the matrix form of s u ( M / M )  in terms of the n basis elements of C1, and 
their products. Indeed, these elements can be written in the following matrix form 
(Kostelecky et a1 1985, Beckers et a1 1988) 

(3.27) 

where the B, are 2m-' x 2m-' Hermitian matrices, basis elements of a CliilFord algebra 
C1,-l and where U is the corresponding identity matrix. An explicit realisation of the 
B, is obtained by setting (Sattinger and Weaver 1986) 

B , = u ~ @ .  . . 0 ~ 3 @ ~ ~ @ 8 2 @ .  . @ U 2  

( P  1 
B , + , - 1 = ~ 3 @ .  . . @ ~ 3 @ ~ 2 @ U 2 @ .  . .@U, 
B , - 1 = ~ 3 @ ~ 3 @ .  . . @ ~ 3  

for 1 6  p c m - 1. The elements a k  in equation (3.27) then 
(3.26). 

Now we introduce n elements P k  satisfying equations 
are defined by 

P k  = UakUt 

(3.28) 

have the form of equation 

(2.12a) and (2.13), which 

(3.29) 

where the U-operator is given by equation (3.4). Here A =  (3.5) will be of the form 

and, since the B, span Cl,,-', it can be shown that we have 

A = -U@ ~3 for m even 

A = i71@03 for m odd. 

It follows from equations (3.4) and (3.31) that 

(3.30) 

(3.31) 

(3.32) 

Then we have from equations (3.29) and (3.32) 

P, = -B, 0 ~2 P,  =U@a,. (3.33) 

Evidently we see that equation (3.33) gives a matrix expression for the elements 

Making the anticommutators of the ai and pj we obtain the expression for the EO 
a'= (3.3). 

(cf equation (2.13)): 

(3.34) 
- 
I w p y =  -$[B, ,  B y ] @ u ,  8"" =fB,@U,. 
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Equation (3.34) shows that the Ei' have the form of equation (3.25). Equation (3.24) 
follows from the Hermiticity property of the B, matrices and from the fact that 
tr[ B,, B , ]  = 0. 

From the commutation of the E' with the a k  or Pk, we generate new odd elements 
that can be expressed as a product of an odd number of ai. From equation (3.27) one 
can show that all such elements have the form of equation (3.26). The even elements 
obtained by their anticommutator will take the form of equation (3.25) and satisfy 
equation (3.24). In particular, the Ev = (3.13) are realised in the form 

apv=;[B,, B,]Ol, E,, =$iB,0u3.  

So we have obtained the matrix structure of su (M/M) .  

of subsection 3.1 let us compute the elements JG = (3.18). We have 

(3.35) - 
To get a better insight into this structure and to find explicitly some of the results 

(3.36) 

From equations (3.36) one can see at once all the properties we have stated in subsection 
3.1. 

4. The odd case 

Let us discuss here the case of ( n  f 1)  odd dimensions with n even. In this case we 
cannot generate a structure of a unitary superalgebra starting from the generators of 
a Clifford algebra Cln*l and including our structure ( 2 . 1 2 ~ )  and (2.13). There are 
several arguments to realise that our construction cannot work. 

If we start from the remark that the ai ( i  = 1, . . . , p odd) form a basis of a vectorial 
representation and if we construct the dual basis ai, we have 

{ak ,ak}=2i ra1  ...a, z o  (no summation) (4.1) 
so the condition (3.8b) cannot be satisfied. 

If we analyse the structure of an odd-dimensional Clifford algebra, there are two 
ways of generating this algebra. The first way is, for example, to start from an 
even-dimensional Clifford algebra with basis ai ( i  = 1 , .  . . , n )  and to add a further 
element 

n 
= (-i)r+l CYk = ( -i)r+lA. 

k = l  
(4.2) 

Using the operator (3.4) we have pi = a i  = equation (3.3), i = 1 , .  . . , n and 

and therefore we have 
Pfltl = Ua,+, U t  = a"+] = = (-i)'+'A (4.3) 

{ P n + l ,  a k 1 =  0 ( P n i - 1 ,  a n + 1 1 +  0 (4.4) 
so that equation (2.13) cannot be satisfied. 

The second way is to construct the Clifford algebra C1,-l as a substructure of C1, 
with a basis of ( n  - 1)  ai generators. The objects E" are built up by the anticommutators 
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of the ai with the /I j  = UajU' ( i ,  j = 1, . . . , n - 1) where U = equation (3.4). The commu- 
tators of the Eu generate new elements that cannot be obtained as products of the ai 
( i  = 1, .  . , , n - 1) and then cannot belong to our Clifford algebra C1,-l. In fact, they 
belong to C1, as expected by the preceding results. Finally, by a simple computation 
we can see that the number of elements that can be obtained as products of aj ( j  = 
1, .  , . , n - 1) is different from the number of elements of a superalgebra. 

Evidently this does not mean that we cannot supersymmetrise in the odd- 
dimensional case. Indeed, one can perform the spin-orbit coupling supersymmetrisa- 
tion procedure just by starting with an ( n  - 1)-dimensional subset of the n-even basis 
elements a k  of a Clifford algebra Cl,. The corresponding ( n  - 1) aj given by equation 
(3.3) are evidently our pj, which clearly satisfy equation (2.13). The Zkj ( k , j  = 1, .  . . , n - 
1) form a subset in the Clifford algebra Cl,. 

5. The explicit examples: n =4, 6 and 8 

Let us present here some explicit examples in order to show how our construction 
works. Subsection 5.1 deals with the important n = 4 case, to which the physical case 
n = 3 is directly related. Subsections 5.2 and 5.3 develop the n = 6 and n = 8 cases, 
respectively. Both cases lead to a direct generalisation to arbitrary even n. They also 
show some differences with respect to the n = 4 case. 

5.1. The case n = 4  

Starting with the four basis elements a ] ,  . . . , a4 of a Clifford algebra C14 we evidently 
generate by products sixteen independent elements. Fifteen of them can be used to 
generate the su(2/2) superalgebra. The six products of two a generate an so(4) algebra. 
Its isomorphism to su(2)Osu(2) is clearly seen using the linear combinations 

J :  = -ii(f&abc(Yb&c * a4LYa) U, b, c = 1,2, 3. (5.1) 

They generate together with the identity the even part su(2/2)0 = su(2) Osu(2)Ou( 1) 
of su(2/2). We can see that the four basis elements a k  correspond to the vectorial 
representation of so(4) and that the four products of three a correspond, up to the 
imaginary factor i, to the dual vectorial representation. They form the odd part ~ ~ ( 2 / 2 ) i .  
Let us insist on the fact that A = n:=, ai is not included in su(2/2) since it cannot be 
obtained by the grading we have defined. 

The equations ( 2 . 1 2 ~ )  and (2.13) are evidently satisfied by the p k  = a k  (=equation 
(3.2)) elements ( k  = 1 , .  . . , 4 )  and by the Ek' defined according to equation (3.9) and 
given explicitly by 

(5.2) 
=ab - 1' c;a4- 1. - - 2 1 E a b c a 4 a c  I - -a l&abcabff , .  

This clearly shows the relation (3.17) between the Ek' and Zkl .  
Finally, it is easy to see that an explicit matrix realisation of the a is given by 

( Y , = ( T ~ , O ( T ~  a4=n0a2 (5.3) 
in accordance with equations (3.25) and (3.26). The p, which are unitarily equivalent 
to the a, are given (cf equation (3.33)) by 

P a  = 0 (+2 p4=10(T1. (5.4) 
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The E satisfying equation (2.13) are then obtained as 

Eab = $&Obc (0~0 0 3 )  E O 4  = ;( IT, 0 I,). ( 5 . 5 )  

Let us now come to the n = 3 case in order to see how it is a subcase of the n = 4 
case. In fact, we have to find three a and three p satisfying the structure of equations 
( 2 . 1 2 ~ )  and (2.13). As stated before (see section 4) we cannot do this starting with a 
Clifford algebra C1, and realising C13 by adding an element. Instead we have to go to 
the algebra Cl4 and consider a subset of three a, for example, the a,  in equation (5.3), 
which form a C13. The a, together with the pa defined in equation (5.4) and the gab 
defined in equation (5.3) satisfy our structure as expected. This choice is directly related 
to the example of the three-dimensional harmonic oscillator with a spin-orbit coupling 
term (Balantekin 1985, Beckers et a1 1987). We also have the following relations: 

[a,, E '~]=  *ia4 a # b, c. (5.6) 

This means that we generate a new element a4 that cannot be obtained as a product 
of the a,. Thus, by this process, we are going out of our starting C13 and generating 
our preceding su(2/2) superalgebra. 

5.2. The case n = 6 

Now we take a 64-dimensional Clifford algebra Cl, with six a as basis elements. Let 
us identify the su(4/4) superalgebra we generate from C16 and which is of dimension 
63. First, the even part su(4 /4)a=su(4)0su(4)0u( l )  is formed by the identity and 
suitable combinations of the fifteen products of two a and the fifteen products of four 
a. The first fifteen elements generate a well known so(6) algebra. The second set 
transforms as the dual twofold antisymmetric representation under this so(6). Their 
suitable combinations (i.e. the J * =  (3.18)) generate s0(6)Os0(6), which is isomorphic 
to su(4)Osu(4). The odd part (32 dimensions) is formed by the a, their dual 0 and 
by the (20) products of three a. From the equations (3.8b) and (3.19) they generate 
the even part. 

In this case (in comparison with the n = 4 case) we see that the Eu (=equation 
(3.9)) do not form an algebra. It is only the set of the @and 8, that form s0(6)Os0(6). 

5.3. The case n = 8 

Now we deal with a Clifford algebra C1, that is of dimension 256. The superalgebra 
su(8/8) is of dimension 255. Its even part su(8/8)0= su(8)Osu(8)Ou(l)  (127 
dimensions) is obtained as follows. The two independent combinations (see equation 
(3.18)) of an element belonging to the set (28 elements) formed by the products of 
two a (which generate a s0(8)), with its dual belonging to the set formed by the 
products of six a, generate s0(8)Os0(8). 

It is known that the adjoint representation of 4 8 )  decomposes with respect to 
so(8) as @+3+35, where 2 is the adjoint representation of so(8) and 35 has to be 
identified with one of the three well known so(8) representations, that is the twofold 
symmetric one, the fourfold antisymmetric one or its conjugate according to the 
identification of the fundamental su(8) representation with correspondingly the vec- 
torial one or the spinorial one or its conjugate of so(8). Thus, in order to recover 
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su(8)Osu(8), we have to add to so(S)Os0(8) the seventy products of the four a in 
correspondence with the above antisymmetric representations. The odd part (128 
dimensions) will be formed by the CY, the products of three a and their duals. 

6. Remarks and comments 

The physical context associated with the spin-orbit coupling procedure of supersym- 
metrisation in quantum mechanics has thus led to an explicit construction of unitary 
Lie superalgebras from Clifford algebras. More precisely, we have shown how, from 
the Clifford algebra Cl,, we can obtain the unitary superalgebra su(2"-'/2"-') when 
n = 2m and n 3 2. In fact, the case n = 2 can also be included as discussed in section 
2 if we accept that the a and p are dependent. Let us insist on the fact that the 
knowledge of only the basis elements of C1, is sufficient in order to make the construc- 
tion. These a k  ( k  = 1, . . . , n )  really are the cornerstone of our construction. This has 
also to deal with superderivations of a Clifford algebra (Scheunert 1979). Finally, let 
us also mention that the above construction shows in particular that only one Clifford 
element, the so-called canonical element, A = (3.5), has been omitted in the correspond- 
ing unitary superalgebra. The explanation is trivial if we notice that A is the only 
element that cannot be generated through the structure relations between odd and 
even operators. Nevertheless, let us mention that if we add A to the above generators 
we get the superalgebra ~(2"-'/2"'-'). 

As a final remark, let us come back on the symmetry properties of the supersymmetric 
Hamiltonian H given by equation (2.10). If the superpotential corresponds to central 
forces, rotational invariance will be included in the (super)symmetries of the system. 
Indeed, when Lkl= x g f  - xfpk, we have 

[ H ,  Jkll = 0 
where the operators 

k, I = 1,2, . . . , n 

J k l  = Lk/ - i s k l  

are total angular momentum operators generating a so(n)  algebra. For n = 4 (and 3), 
such an invariance holds since the Zk' inside the Hamiltonian are really associated 
with the elements of a so(4) algebra (see subsection 5.1) and consequently terms of 
the type &Ek' are really spin-orbit coupling terms. For n>4, the =''.do not close 
under commutation but satisfy the relations (3.16), implying once again the conservation 
O f  the Jkl. 
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